Article ID Journal Published Year Pages File Type
7934411 Physica E: Low-dimensional Systems and Nanostructures 2015 11 Pages PDF
Abstract
Using first principles many-body calculations method, we study electronic and optical properties of 2D silicene-graphene hybrid. Based on phonon-spectrum calculations, we show the absence of soft modes indicating the stability of the system. We also calculate the band gap in both the absence and the presence of quasiparticle corrections. The analysis of optical absorption spectra and the correlation in real space between the excited electron-hole states reveals that the excitonic effects in silicene-graphene hybrid are significant and leads to strong bound excitons. The first active exciton is characterized by a binding energy of 0.81 eV, an effective mass 0.41m0 and a Bohr radius of 2.78 Å. The results of this work make silicene-graphene hybrid a promising candidate for optoelectronic applications.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,