Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7934695 | Progress in Natural Science: Materials International | 2018 | 8 Pages |
Abstract
This study was undertaken to evaluate the effects of mixing BDC-NO2 and BDC-NH2 linkers in the synthesis of Zr-based metal organic frameworks (Zr-MOFs) on their adsorption and separation of CO2 and CH4. UiO-66 with single or binary -NO2 and -NH2 samples were synthesized under solvothermal conditions and activated by solvent exchanging using methanol. Structural analyses of the materials were conducted using FTIR, XRD, TGA, SEM, 1HNMR and N2 adsorption/desorption techniques and adsorption of CO2 and CH4 at high pressures and different temperatures (273 and 298â¯K) was investigated. It was found that UiO-66-NH2 exhibited higher CO2 and CH4 adsorption capacities than those of UiO-66-NO2. Addition of -NH2 functional group in UiO-66-NO2 could enhance CO2 and CH4 adsorption due to the extra CO2 adsorption sites of -NH2 functional groups. Addition of -NO2 functional group to UiO-66-NH2 at a low loading could also increase CO2 and CH4 adsorption, however, a high loading of NO2 functional group to UiO-66-NH2 would result in decreased adsorption.
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
Zana Hassan Rada, Hussein Rasool Abid, Hongqi Sun, Jin Shang, Jiaye Li, Yingdian He, Shaomin Liu, Shaobin Wang,