Article ID Journal Published Year Pages File Type
7934924 Solar Energy 2018 15 Pages PDF
Abstract
A thorough evaluation of the deterministic and probabilistic properties of the model is conducted for a full year in the tropical island of Singapore. The impact of the sky conditions on its performance is also considered. Furthermore, a rigorous statistical framework is employed to systematically benchmark our model against two state of the art methods, a Lasso model output statistic procedure and an analog ensemble (AnEn). Our model significantly improves the numerical weather prediction model: it achieves a 41% reduction of the MAE and 39% reduction of the RMSE. It is also slightly more accurate than Lasso and has a CRPS 4% lower than that of AnEn.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , ,