Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7937535 | Solar Energy | 2015 | 17 Pages |
Abstract
This paper introduces a new empirical formulation of the clear-sky intensity distribution based on images acquired with a sky imager developed at the PROMES-CNRS laboratory (Perpignan, France). Both the formulation and image processing methodology are detailed and stand for key steps in the development of a high quality cloud detection algorithm. The work presented in this paper is a part of a research project which aims at improving solar plant control procedures using direct normal irradiance forecasts under various sky conditions at short-term horizon (5-30 min) and high spatial resolution (â¼1 km2). Modelling the clear-sky intensity distribution in real time allows clear-sky images to be generated. These clear-sky images can then be used to remove the clear-sky background anisotropy on images and so improve cloud detection algorithms significantly. Cloud detection is essential in short-term solar resource forecasting. The new formulation is especially designed for improving performance of the existing models in the circumsolar area. When tested over more than 2200 clear-sky images, corresponding to a solar zenith angle spanning from 24° to 85°, the new formulation outperforms a standard approach based on the All-Weather model (Perez et al., 1993) by 15% on the whole sky and more than 20% in the circumsolar area. Application of the methodology for the real-time cloud detection purpose is discussed at the end of the paper.
Keywords
Related Topics
Physical Sciences and Engineering
Energy
Renewable Energy, Sustainability and the Environment
Authors
Rémi Chauvin, Julien Nou, Stéphane Thil, Stéphane Grieu,