Article ID Journal Published Year Pages File Type
793802 Journal of Materials Processing Technology 2008 11 Pages PDF
Abstract

Two thermo-mechanical models based on different elastic-visco-plastic constitutive laws are applied to simulate temperature and stress development of a slice through the solidifying shell of 0.27%C steel in a continuous casting mold under typical commercial operating conditions with realistic temperature dependant properties. A general form of the transient heat equation, including latent-heat from phase transformations such as solidification and other temperature-dependent properties, is solved numerically for the temperature field history. The resulting thermal stresses are solved by integrating the elastic-visco-plastic constitutive laws of Kozlowski [P.F. Kozlowski, B.G. Thomas, J.A. Azzi, H. Wang, Simple constitutive equations for steel at high temperature, Metall. Trans. 23A (1992) 903–918] for austenite in combination with the Zhu power-law [H. Zhu, Coupled thermal–mechanical finite-element model with application to initial solidification, PhD thesis, University of Illinois, 1993] for delta-ferrite with ABAQUS [ABAQUS Inc., User Manuals v6.6, 2006] using a user-defined subroutine UMAT [S. Koric, B.G. Thomas, Efficient thermo-mechanical model for solidification processes, Int. J. Num. Meth. Eng. 66 (2006) 1955–1989], and the Anand law for steel [L. Anand, Constitutive equations for the rate dependant deformation of metals at elevated temperatures, ASME J. Eng. Mater. Technol. 104 (1982) 12–17; S.B. Brown, K.H. Kim, L. Anand, An internal variable constitutive model for hot working of metals, Int. J. Plasticity 6 (1989) 95–130] using the integration scheme recently implemented in ANSYS [ANSYS Inc., User Manuals v100, 2006]. The results from these two approaches are compared and CPU times are benchmarked. A comparison of one-dimensional constitutive behavior of these laws with experimental tensile test data [P.J. Wray, Plastic deformation of delta-ferritic iron at intermediate strain rates, Metall. Trans. A 7A (1976) 1621–1627; P.J. Wray, Effect of carbon content on the plastic flow of plain carbon steel at elevated temperatures, Metall. Trans. A 13 (1982) 125–134] and previous work [A.E. Huespe, A. Cardona, N. Nigro, V. Fachinotti, Visco-plastic constitutive models of steel at high temperature, J. Mater. Process. Technol. 102 (2000) 143–152] shows reasonable agreement for both models, although the Kozlowski–Zhu approach is much more accurate for low carbon steels. The thermo-mechanical models studied here are useful for efficient and accurate analysis of steel solidification processes using convenient commercial software.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, ,