Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7938310 | Solar Energy | 2014 | 12 Pages |
Abstract
This paper focuses on development of optimal sizing model based on an iterative approach to optimize the capacity sizes of various stand-alone PV/wind/diesel/battery hybrid system components for zero load energy deficit. The suggested model takes into consideration the hybrid system submodels, the Total Energy Deficit (TED), the Total Net Present Cost (TNPC) and the Energy Cost (EC). The flow diagram of the hybrid optimal sizing model is also demonstrated. Exploiting the developed model, all configurations giving the rate of 0% of Total Energy Deficit (TED) are retained. Afterward, the optimal configuration is predicted on the basis of the minimum cost. Using solar radiation, ambient temperature and wind velocity data collected on the site of Ghardaïa (Algeria), the optimized system is compared to other energy source choices. The optimization results show that a PV/wind/diesel/battery option is more economically viable compared to PV/wind/battery system or diesel generator (DG) only.
Keywords
Related Topics
Physical Sciences and Engineering
Energy
Renewable Energy, Sustainability and the Environment
Authors
Abdelhamid Kaabeche, Rachid Ibtiouen,