Article ID Journal Published Year Pages File Type
793888 Journal of the Mechanics and Physics of Solids 2009 11 Pages PDF
Abstract

The strong-contrast formulation is used to predict the effective conductivity of a porous material. The distribution, shape and orientation of the two phases are taken into account using two- and three-point probability distribution functions. A new approximation for the three-point probability function appropriate for two-phase media is proposed and discussed. Computed results for the effective conductivity using the strong-contrast formulation are compared to the Voigt and the Hashin-Shtrikman upper-bound estimates. These results show that the predicted effective conductivity is lower than both Voigt and Hashin-Shtrikman bounds. Compared to previous results using the weak-contrast formulation, the strong-contrast formulation seems to provide a better estimate for the effect of the microstructure on the conductivity.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , , ,