Article ID Journal Published Year Pages File Type
7941968 Superlattices and Microstructures 2016 11 Pages PDF
Abstract
Band structure and optical gain properties of AlInGaN/AlInGaN-delta-AlGaN quantum wells for deep-ultraviolet light emitting and lasers diodes with wavelength λ ∼229 nm and TE-polarized optical gain peak intensity ∼1.7 times larger than the conventional AlInN-delta-GaN was proposed and investigated in this work. The active region is made up of 20 Å staggered Al0.89In0.03Ga0.08N/Al0.8In 0.01Ga0.19N layers with a 3 Å Al0.46Ga0.54N delta layer. The use of the quaternary AlInGaN well layer permits the independent control of the band gap and the lattice parameter, so that the internal electric field induced by polarizations can be reduced and interband transition energy increases. Therefore, we can predict that the optical performance of the AlInGaN-delta-AlGaN is more convenient for an emission in the deep-ultraviolet than that of the conventional AlInN-delta-GaN-based quantum wells.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,