Article ID Journal Published Year Pages File Type
7942363 Superlattices and Microstructures 2015 22 Pages PDF
Abstract
In this study, effects of the presence of vacancy defects in a hexagonal nanosheet on Young's modulus, effective Poisson's ratio, buckling loads and buckling modes, regardless of its constituent atoms, have been studied. Explicit expressions are proposed in order to define these characteristics considering a defect distribution term as a modifying parameter. Molecular structural mechanics concepts and FEM simulation are utilized in order to obtain these expressions and results. Different sizes and shapes of defects as well as random distribution of vacancies have been considered. The results for perfect Boron Nitride, Silicon Carbide and graphene nanosheet as well as defected Boron Nitride nanosheets are in a good agreement with those available in literature. Linear degradation behavior of Young's modulus and linear increase of effective Poisson's ratio in terms of defects distribution are observed in obtained results. A second order behavior is also observed in decreasing buckling load in terms of increasing vacancy distribution. Moreover, buckling mode characteristics due to the percentage of defects distribution has been investigated.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,