Article ID Journal Published Year Pages File Type
7943543 Superlattices and Microstructures 2013 9 Pages PDF
Abstract
Magneto bound polaron in a GaMnAs/Ga0.6Al0.4As quantum dot is investigated with the inclusion of exchange interaction effects due to Mn alloy content and the geometrical confinement. The exciton binding energy and the optical transition energy are computed as functions of dot radius and the magnetic field strength for a fixed Mn alloy content (x = 0.02) in a GaMnAs quantum dot. Numerical calculations are performed using variational method within a single band effective mass approximation. The spin polaronic energy of the heavy hole exciton is studied with the spatial confinement using a mean field theory in the presence of magnetic field strength. The magnetization as a function of dot radius is investigated in a GaMnAs/Ga0.6Al0.4As quantum dot. The magnetic field induced size dependence of g-factor is studied. The effective g-factor of conduction (valence) band electron (hole) is obtained in the GaMnAs quantum dot. The results bring out that (i) the geometrical dependence on sp-d exchange interaction in the GaMnAs/Ga0.6Al0.4As quantum dot has great influence with the magnetic field strength, (ii) the Landé factor is more sensitive if the geometrical confinement effect is included and (iii) the value of g-factor increases when the magnetic field strength is enhanced for all the dot radii. Our results are in good agreement with the other investigators.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,