Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
794405 | Journal of Fluids and Structures | 2008 | 6 Pages |
This paper studies the flow field of a particular fluid-structure interaction phenomenon—the continuous angular oscillation of a centrally pivoted equilateral triangular cylinder (prism), under uniform two-dimensional incompressible flow. Dye flow visualization of a 30 cm long and 10 cm wide cylinder in a two-dimensional water tunnel was conducted. Under a uniform incoming flow of 7.5 cm/s, the cylinder oscillated continuously after an initial perturbation. On the windward side of the cylinder, a vortex was formed at the sharp edges of the cylinder during the initial phase, whereas on the leeward side, the flow stayed attached. The phase-averaged particle image velocimetry (PIV) measurements are also presented. PIV results show the interchange of flow patterns from that over a flat plate to flow past a sharp edge and vice versa.