Article ID Journal Published Year Pages File Type
794586 Journal of Fluids and Structures 2007 16 Pages PDF
Abstract

Limit cycle oscillations (LCO) as well as nonlinear aeroelastic analysis of rectangular cantilever wings with a cubic nonlinearity are investigated. Aeroelastic equations of a rectangular cantilever wing with two degrees of freedom in an incompressible potential flow are presented in the time domain. The harmonic balance method is modified to calculate the LCO frequency and amplitude for rectangular wings. In order to verify the derived formulation, flutter boundaries are obtained via a linear analysis of the derived system of equations for five different cases and compared with experimental data. Satisfactory results are gained through this comparison. The problem of finding the LCO frequency and amplitude is solved via applying the two methods discussed for two different cases with hardening cubic nonlinearities. The results from first-, third- and fifth-order harmonic balance methods are compared with the results of an exact numerical solution. A close agreement is obtained between these harmonic balance methods and the exact numerical solution of the governing aeroelastic equations. Finally, the nonlinear aeroelastic analysis of a rectangular cantilever wing with a softening nonlinearity is studied.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,