Article ID Journal Published Year Pages File Type
794614 Journal of Materials Processing Technology 2006 5 Pages PDF
Abstract

Finite element simulations have been performed in order to study the influence of bearing geometry on the residual stress-state in cold drawn wires. Experiments in full industrial scale have been performed in order to verify the FEM results. The residual stresses were measured with X-ray diffraction in both the axial and tangential direction. The material used was a high carbon steel for roller bearings, 100Cr6. It was found that the geometry of the bearing has a large influence of the residual stress-state. When the bearing is somewhat tapered, a gap in the beginning of the bearing is formed. This “double contact” reduces the axial and tangential residual stress to minimum or even to a compressive state. A cylindrical bearing gave no contact in the bearing at all due to elastic deformation. This resulted in a large axial and tangential residual stress. It was shown that even a small divergence from the desired bearing geometry due to the grinding of the die could affect the residual stress immensely.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
,