Article ID Journal Published Year Pages File Type
794793 Journal of Materials Processing Technology 2011 7 Pages PDF
Abstract

Hydrophobic Cu surfaces with tunable regular microstructure and random nanostructures were fabricated by nanosecond pulsed laser texturing and chemical etching. The regular micro-scale roughness can be tuned from 5 μm to 30 μm Rz by nanosecond laser texturing while the ligament width and spacing of the random nano porosity about 10–50 nm can be realized by selective chemical etching. Wettability tests demonstrate that the Cu surface with this micro/nanostructural hierarchy, analogous to that of lotus leaves found in nature, is superhydrophobic with a water contact angle around 153°. The random nanostructure by selective etching plays an important role for hydrophobicity in addition to the regular microstructure by nanosecond laser texturing.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , , , , ,