Article ID Journal Published Year Pages File Type
794936 Journal of Materials Processing Technology 2010 8 Pages PDF
Abstract

Shape memory alloys (SMAs), in particular Nitinol (NiTi), are of increasing interest in research and industry due to their outstanding properties, e.g. the shape memory effect (SME) and high biocompatibility. Obviously, it is necessary to machine these elements from NiTi sheet materials using suitable processing methods that provide high precision and retain the shape memory effect. Pulsed Nd:YAG laser cutting of 1 mm thick NiTi shape memory alloys for medical applications (SMA-implants) has been investigated. Due to the local energy input only small heat-affected zones (HAZ) occur and the shape memory properties remain. The influence of key parameters like pulse energy, pulse width, and spot overlap on the cut geometry, roughness and HAZ is shown.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , ,