Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
795022 | Journal of Applied Mathematics and Mechanics | 2014 | 11 Pages |
The analytical method of boundary states is developed and theoretically substantiated. A corollary of the Weierstrass theorem is proved according to which a function that is harmonic in a bounded, simply connected domain can be approximated by a series of homogeneous harmonic polynomials. A basis of the space of functions that are harmonic outside any neighbourhood of a point is constructed. An algorithm is developed for filling the basis of the space of the states of a multicavity elastic body. The method is used to solve a series of problems of determining of the stress-strain state of an unbounded elastic medium containing spherical cavities or inclusions with different boundary conditions: the boundary of the cavity is free (the Southwell problem), constrained or under conditions of contact with a rigid core. The effect of the width of the intercavity layer on the stress concentration is analysed in a non-axisymmetric problem with two cavities. The form of the relation between the mean-square discrepancy in the boundary conditions of the solution obtained and the number of elements in the basis is indicative of the numerical convergence of the solution of this problem.