Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7951863 | Journal of Materials Science & Technology | 2018 | 21 Pages |
Abstract
Generalized stacking-fault energies (GSFEs) of basal-plane stacking faults I1 and I2 in Mg alloys have been studied based on first-principles calculations, where 43 alloying elements were considered. It is found that the most contributing features of alloying elements to GSFEs are bulk modulus, equilibrium volume, binding energy, atomic radius and ionization energy. Both bulk modulus and ionization energy exhibit positive relationships with GSFEs, and the others show opposite relationships. Multiple regressions have been performed to offer a quantitative prediction for basal-plane GSFEs in Mg-X systems. GSFEs, alloying effects of elements and the prediction model established within this work may provide guidelines for new Mg alloys design with better ductility.
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Chemistry
Authors
Qing Dong, Zhe Luo, Hong Zhu, Leyun Wang, Tao Ying, Zhaohui Jin, Dejiang Li, Wenjiang Ding, Xiaoqin Zeng,