Article ID Journal Published Year Pages File Type
7951929 Journal of Materials Science & Technology 2018 7 Pages PDF
Abstract
Polysaccharide-based bionanocomposite hydrogels with functional nanomaterials were used in biomedical applications. Self-organization of xanthan gum and chitosan in the presence of iron oxide magnetic nanoparticles (Fe3O4 MNPs) allowed us to form magnetically responsive polyelectrolyte complex hydrogels (MPECHs) via insitu ionic complexation using D-(+)-glucuronic acid δ-lactone as a green acidifying agent. Characterization confirmed the successful formation of (and structural interactions within) the MPECH and good porous structure. The rheological behavior and compressive properties of the PECH and MPECH were measured. The results indicated that the incorporation of Fe3O4 MNPs into the PECH greatly improved mechanical properties and storage modulus (G'). In vitro cell culture of NIH3T3 fibroblasts on MPECHs showed improvements in cell proliferation and adhesion in an external magnetic field relative to the pristine PECH. The results showed that the newly developed MPECH could potentially be used as a magnetically stimulated system in tissue engineering applications.
Related Topics
Physical Sciences and Engineering Materials Science Materials Chemistry
Authors
, , ,