Article ID Journal Published Year Pages File Type
795202 Journal of Applied Mathematics and Mechanics 2010 7 Pages PDF
Abstract

Parts of the asymptotic stability boundaries of the uniform motion of the centre of mass of a system of bodies consisting of an asymmetrical satellite with a three-axis gyroscope in a circular orbit are investigated by the second Lyapunov method. Terms of the Lyapunov function that are higher than the second order are enlisted for the investigation. The sign-definiteness criterion of inhomogeneous forms is employed for the corresponding function. Parts of the stability boundaries in which the steady motion investigated is asymptotically stable are established using the Lyapunov asymptotic stability theorem. Application of the Barbashin and Krasovskii theorems reveals parts of the stability boundaries in which the steady motion is unstable. It is established that the asymptotic stability of the steady motion investigated is solved by expanding the Lyapunov function to sixth-order terms.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,