Article ID Journal Published Year Pages File Type
795405 Journal of Applied Mathematics and Mechanics 2008 10 Pages PDF
Abstract

Outer asymptotic expansions of the solutions of the steady heat conduction problem for laminated anisotropic non-uniform plates for different boundary conditions on the faces are constructed. The two-dimensional resolvents obtained are analysed and the asymptotic properties of the solutions of the heat-conduction problem are investigated. Estimates are obtained of the accuracy with which the temperature in the plate outside the limits of the boundary layer can be assumed to be piecewise-linearly or piecewise-quadratically distributed over the thickness of the laminated structure. A physical justification for certain features of the asymptotic expansions of the temperature is given.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,