Article ID Journal Published Year Pages File Type
795866 Journal of Materials Processing Technology 2014 10 Pages PDF
Abstract

•A forming process for mechanical tube expansion is analyzed.•Experimental approaches for materials and process characterization are shown.•A structured simulation methodology for process evaluation is detailed.•Dependence of material- and process-related parameters is highlighted.

Air heat exchangers are made with tubes joined to finned pack. The connection between tubes and fins can be obtained through a mechanical process where an ogive is pushed inside the tube with smaller internal diameter causing its expansion. Residual plastic deformation provides the assembly with the fins. Accurate connection over the whole contact area of the tubes and fins is essential for maximum heat exchange efficiency. The goal of this work is to study and develop a finite element model able to effectively simulate expansion forming, allowing process analysis and, eventually, process optimization. The paper is divided into a first experimental part, where the materials used for the heat exchangers are characterized, and a second numerical part where models have been developed on the basis of the experimental data. The developed models are used to identify the material properties with an inverse method, and then to study the technological process of tube expansion by using a simplified but sufficiently accurate description. The model has proved to be an effective design tool, as it can evaluate the influence of the main parameters on the process and so optimize production according to technological variations.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , ,