Article ID Journal Published Year Pages File Type
796020 Journal of Materials Processing Technology 2010 7 Pages PDF
Abstract

Al–0.3Sc–0.15Zr alloy was cast using copper die, insulated alumina mould, and conventional investment shell mould to obtain a wide range of cooling rates. A novel method of quenching the investment shell mould along with the liquid metal in oil was also used which resulted in a significant increase in the cooling rate. The order in increasing average cooling rate is 0.16, 0.78, 1.28, 5.93, 7.69 °C/s. The as-cast samples were aged isothermally at 300 °C and various temperatures for 2 h. Slow cooled samples (in alumina-insulated mould) showed the presence of as-cast primary precipitates as well as rod shaped discontinuous precipitates with high density of interfacial dislocation. The amount of as-cast precipitates decreased with increase in the cooling rate. These as-cast precipitates grew at the expense of Sc in solid solution reducing the number of precipitates formed during ageing process. This results in lower increment in hardness on ageing.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , ,