Article ID Journal Published Year Pages File Type
7961136 Computational Materials Science 2014 6 Pages PDF
Abstract
To explore a novel sensor to detect toxic pollutant in the atmosphere, we investigate reactivities of the germanium doped (Ge-doped) (8, 0) single-walled boron nitride nanotubes (BNNTs) towards carbon monoxide (CO) and nitric oxide (NO) by performing density functional theory (DFT) calculations. CO and NO are found to present strong chemisorption on the Ge-doped BNNT with substituted boron and nitrogen defect site. Calculated data for the electronic density of states and the electronic charge densities further indicate that the doping of Ge atom improves the electronic transport property of the BNNT, induces magnetism of the BNNT, and increases its adsorption sensitivity towards CO and NO. Doping BNNTs with Ge is expected to be an available strategy for improving the properties of BNNTs, and Ge-doped BNNT is expected to be a potential resource for detecting the presence of CO and NO.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,