Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7961486 | Computational Materials Science | 2013 | 4 Pages |
Abstract
We have performed density functional theory calculations to investigate the influence of doping of C and Si atoms on the geometric, electronic, solvation, energetic, and field emission properties of a MgO nano-cage. It has been found that substitution of one of the Mg atoms of the nano-cage by either C or Si atom is energetically favorable while substituting an O atom with both of them is unfavorable. It has been also found that replacing Mg or O atom of the cluster by one C atom much more increases its conductance than that by Si one. In fact, HOMO/LUMO gap (Eg) of the cluster is reduced from 4.86 to 1.11Â eV, upon replacing Mg atom by C. Based on the obtained results, substituting a Mg atom by either C or Si atom may significantly increase the field electron emission current from the cluster surface by reducing its work function. Overall, doping of Mg12O12 nano-cage by either C or Si atom increases its solubility, conductance, electric dipole moment, kinetic stability, and field electron emission while decreases the Eg and work function.
Related Topics
Physical Sciences and Engineering
Engineering
Computational Mechanics
Authors
Jamal Kakemam, Ali Ahmadi Peyghan,