Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
796531 | Journal of Materials Processing Technology | 2006 | 9 Pages |
In the present study, a novel aluminum-based hybrid composite containing titanium particulates (discontinuous/particulates reinforcement) and iron mesh (continuous/interconnected reinforcement) was synthesized using a solidification processing route involving disintegrated melt deposition coupled with hot extrusion. Microstructural characterization studies conducted on hybrid composite revealed reduced grain size (∼44%) when compared to monolithic aluminum, uniform distribution of unreacted and reacted titanium in matrix, and absence of reaction products at the iron-wire/aluminum matrix interface. Results of properties characterization revealed that the presence of hybrid reinforcement led to a reduction in coefficient of thermal expansion (∼7.6%) and an increase in hardness, elastic modulus (∼10%), 0.2% yield strength (20%) and ultimate tensile strength (∼27%). The enhancement in properties realized in hybrid composite was found to be much higher when compared to conventional Al/SiC composite formulations containing relatively higher weight percentages of SiC particulates.