Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7969032 | Materials Characterization | 2018 | 11 Pages |
Abstract
The microstructure evolution in both surface and bulk grains in a pure Fe-19Cr-12Ni alloy has been analyzed using electron backscatter diffraction after tensile testing interrupted at different strains. Surface grains were studied during in situ tensile testing performed in a scanning electron microscope, whereas bulk grains were studied after conventional tensile testing. The evolution of the deformation structure in surface and bulk grains displays a strong resemblance but the strain needed to obtain a similar deformation structure is lower in the case of surface grains. Both slip and twinning are observed to be important deformation mechanisms, whereas deformation-induced martensite formation is of minor importance. Since the stacking fault energy (SFE) is low, ~17â¯mJ/m2, dynamic recovery by cross slip of un-dissociated dislocations is unfavorable. This reduces the annihilation of dislocations which in turn leads to a significant increase of low angle boundaries with increasing strain. The low SFE also favors formation of deformation twins which reduces the slip distance, leading to a hardening similar to the Hall-Petch relation. The combination of a low ability for cross-slip and a reduced slip distance caused by twinning is concluded to be the main reason for maintaining a high strain-hardening rate up to strains close to necking.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
K. Yvell, T.M. Grehk, P. Hedström, A. Borgenstam, G. Engberg,