Article ID Journal Published Year Pages File Type
7969141 Materials Characterization 2018 10 Pages PDF
Abstract
The texture evolution process and mechanism of surface grains in electroformed Ni after annealing with an initially duplex 〈100⟩ + 〈111〉 fiber texture during uniaxial tensile deformation were investigated by using interrupted in situ electron backscattered diffraction. The results showed that the initially duplex 〈100〉 + 〈111〉 fiber texture evolved into the metastable Cube orientation with a weak Cu orientation during the uniaxial tensile deformation. The volume fractions of 〈100〉 and 〈111〉 fiber texture decreased from 54.0% to 29.3% and 16.6% to 6.6%, respectively. The volume of the Cube orientation remained almost stable at 12%, whereas that of the Cu orientation increased from 1% to 2.9%. A simulation of the final preferred orientation based on the Taylor model was a cubic texture, which qualitatively agreed well with the experimental result. The simulated results indicated that the formed Cube and Cu textures evolved from the initial 〈100〉 and 〈111〉 fiber textures, respectively.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , , ,