Article ID Journal Published Year Pages File Type
7969152 Materials Characterization 2018 22 Pages PDF
Abstract
A dilute Al-0.07Zr-0.02Sc-0.005Er-0.06Si (at.%) alloy was microalloyed with 0.08 at.% Nb or Ta. Atom-probe tomography reveals that, upon aging, Nb and Ta partition to the coherent L12-Al3(Zr,Sc,Er) nanoprecipitates (with average concentrations of 0.2 and 0.08 at.%, respectively), with both segregating at the matrix/nanoprecipitate heterophase interface. This is consistent with the Nb- and Ta-modified alloys exhibiting, as compared to the unmodified alloy: (i) higher peak microhardness, from a higher nanoprecipitate volume fraction and/or lattice parameter mismatch; and (ii) improved aging resistance, from slower nanoprecipitate coarsening due to the small diffusivities of niobium and tantalum in aluminum. Analogous results were previously reported for a V-modified alloy.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , ,