Article ID Journal Published Year Pages File Type
796982 Journal of the Mechanics and Physics of Solids 2008 12 Pages PDF
Abstract

Characterization of interfacial adhesion is critical for the development of wafer bonding processes to manufacture microsystems with high yield and reliability. It is imperative that the test method used in such adhesion studies corresponds to the loading conditions present during processing and operation of the devices. In most applications in which wafers and die are bonded, the interface experiences a combination of shear and normal loading (i.e. mixed-mode loading) with the relative magnitude of the Mode I and II components varying in different scenarios. In the current work, the toughness of Cu–Cu thermocompression bonds, which are of interest for the fabrication of three-dimensional integrated circuits, is analyzed using a bonded chevron specimen with layers of different thickness that allows for the application of interfacial loading with variable mode mixity. The phase angle (a function of the degree of mode mixity at the interface) is varied from 0° to 24° by changing the layer thickness ratio from 1 to 0.48. The Cu–Cu bond toughness increases from 2.68 to 10.1 J/m2, as the loading is changed from Mode I (pure tension) to a loading with a phase angle of 24°. The energy of plastic dissipation increases with increasing mode mixity, resulting in the enhanced interface toughness. The Mode I toughness of Cu–Cu bonds is minimally affected by plasticity, and therefore, provides the closest estimate of the interfacial work of fracture under the bonding conditions employed.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,