Article ID Journal Published Year Pages File Type
79700 Solar Energy Materials and Solar Cells 2009 7 Pages PDF
Abstract

The dye-sensitized solar cell dye Z-907, [RuLL′(NCS)2] may loose a thiocyanate ligand at elevated temperatures (80–100 °C) by ligand exchange with the solar cell additive 4-tert-butylpyridine (4-TBP) or the electrolyte solvent 3-methoxypropionitrile (3-MPN). The mechanism in homogeneous solution proceeds via three equilibrium reactions Eqs. (1)–(3) with the solvent complex [RuLL′(NCS)(3-MPN)] as an intermediate:[RuLL′(NCS)2]+3-MPN=[RuLL′(NCS)(3-MPN)]++NCS− (1)[RuLL′(NCS)(3-MPN)]++4-TBP=[RuLL′(NCS)(4-TBP)]++3-MPN (2)[RuLL′(NCS)2]+4-TBP=[RuLL′(NCS)(4-TBP)]++NCS− (3)A similar mechanism describes the heterogeneous substitution reactions of Z-907 attached to the surface of TiO2 particles with 3-MPN and 4-TBP. All the six homogeneous and heterogeneous rate constants were obtained at 100 °C by monitoring the decay of Z-907 and product formation in test-tube experiments by HPLC coupled to UV/vis and electrospray mass spectrometry.A half-lifetime t1/2=150 h was obtained for the Z-907 dye bound to TiO2 nanocrystalline particles at 85 °C in the presence of 4-TBP and 3-MPN. Dye-sensitized solar cells (DSC) with Z-907 as a sensitizer and application of the so-called “non-robust” electrolytes containing 4-TBP and 3-MPN is therefore not expected to be able to pass a 1000 h thermal stress test at 85 °C. Addition of thiocyanate to the cell electrolyte may however, eliminate or reduce the problems caused by dye thiocyanate ligand substitution in DSC cells.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , ,