Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7970333 | Materials Characterization | 2015 | 14 Pages |
Abstract
The microstructure of direct laser deposited (DLD) IN718 has been investigated in detail using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results confirm that the dendrite core microstructure can be linked to the cooling rate experienced during the deposition. A ~ 100 μm wide δ partially dissolved region in the IN718 substrate was observed close to the substrate/deposit boundary. In the deposited IN718, γ/Laves eutectic constituent is the predominant minor microconstituent. Irregular and regular (small) (Nb,Ti)C carbides and a mixture of the carbides and Laves were observed. Most M3B2 borides were nucleated around a (Nb,Ti)C carbide. Needles of δ phase precipitated from the Laves phase were also observed. A complex constituent (of Laves, δ, α-Cr, γâ³, and γ matrix) is reported in IN718 for the first time. The formation of α-Cr particles could be related to Cr rejection during the formation and growth of Cr-depleted δ phase.
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
R.G. Ding, Z.W. Huang, H.Y. Li, I. Mitchell, G. Baxter, P. Bowen,