Article ID Journal Published Year Pages File Type
7971339 Materials Characterization 2013 10 Pages PDF
Abstract
12%Cr reduced activation ferrite/martensite steels are promising candidate materials for good corrosion and irradiation resistance used for supercritical water-cooled reactor cladding and in-core components. V and Ta are considered to have improved the creep strength of high Cr steels by precipitating as MX phase. In this paper, a series of trial products microalloyed with V and V-Ta are produced, and the microstructure is characterized after quenching at 1050 °C and tempering at 780 °C by using TEM method to investigate the effect of these elements on the precipitation behavior of 12%Cr reduced activation ferrite/martensite steel. The results from both the experimental observations and thermodynamic and kinetic calculations reveal that V and V-Ta can promote the stable MX precipitation instead of M2X, thus increasing the volume fraction of M23C6. Two-phase separation behavior of the (Ta, V)(C, N) carbonitride into a Ta(V)C(N) phase and a V(Ta)N(C) phase in 12Cr3WVTa steel is observed and further discussed.
Keywords
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , ,