Article ID Journal Published Year Pages File Type
7971542 Materials Science and Engineering: A 2018 30 Pages PDF
Abstract
A novel Al-based composite reinforced with Ti-based metallic glass (MG) nanoparticles was fabricated by powder metallurgy through mechanical alloying combined with hot extrusion. During the ball-milling process, MG microparticles were refined into nanosized particles through severe plastic deformation. Hot extrusion of the milled powders resulted in a dense and uniform dispersion of the metallic glass nanoparticles in the Al-7075 matrix. This unique homogeneous structure led to a significant enhancement of strength without adversely affecting the plasticity, thus developing super-high specific yield strength. The yield strength increased from 297 MPa for Al-7075 matrix to 530, 610, 880, and 1014 MPa for the composites milled for 10, 15, 30, and 50 h, respectively. A critical analysis of the different factors contributing to the strength of the composites was carried out. Grain refinement, Orowan strengthening, and dislocation-dislocation interactions were demonstrated to be the most important contributors to the enhanced strength of the nanocomposite.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , , , ,