Article ID Journal Published Year Pages File Type
797168 Journal of Fluids and Structures 2011 16 Pages PDF
Abstract

The aeroacoustic noise generated by a high speed, planar gas jet impinging on a flat plate is investigated experimentally. The jet used in this study is typical of those commonly found in industrial applications such as in various coating control and heat transfer processes. Normal jet impingement on the plate is found to generate strong acoustic tones over a wide range of impingement distances and jet velocities. The characteristics of these tones, as a function of the jet velocity and impingement distance, are quantified. Phase and amplitude measurements of the pressure fluctuations on the impingement plate indicate that the acoustic tones are generated by an antisymmetric instability mode of the jet oscillation. The effect of plate inclination in both the transverse and span-wise directions, with respect to the incident jet, is also studied. The jet-plate tone is found to be much more sensitive to changes in the span-wise plate inclination than to changes in the transverse inclination, but in both cases, a complete suppression of the tone is found to be possible.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,