Article ID Journal Published Year Pages File Type
797216 Journal of the Mechanics and Physics of Solids 2016 39 Pages PDF
Abstract

In this paper we propose to study wave propagation, transmission and reflection in band-gap mechanical metamaterials via the relaxed micromorphic model. To do so, guided by a suitable variational procedure, we start deriving the jump duality conditions to be imposed at surfaces of discontinuity of the material properties in non-dissipative, linear-elastic, isotropic, relaxed micromorphic media. Jump conditions to be imposed at surfaces of discontinuity embedded in Cauchy and Mindlin continua are also presented as a result of the application of a similar variational procedure. The introduced theoretical framework subsequently allows the transparent set-up of different types of micro-macro connections granting the description of both (i) internal connexions at material discontinuity surfaces embedded in the considered continua and, as a particular case, (ii) possible connections between different (Cauchy, Mindlin or relaxed micromorphic) continua. The established theoretical framework is general enough to be used for the description of a wealth of different physical situations and can be used as reference for further studies involving the need of suitably connecting different continua in view of (meta-)structural design. In the second part of the paper, we focus our attention on the case of an interface between a classical Cauchy continuum on one side and a relaxed micromorphic one on the other side in order to perform explicit numerical simulations of wave reflection and transmission. This particular choice is descriptive of a specific physical situation in which a classical material is connected to a phononic crystal. The reflective properties of this particular interface are numerically investigated for different types of possible micro-macro connections, so explicitly showing the effect of different boundary conditions on the phenomena of reflection and transmission. Finally, the case of the connection between a Cauchy continuum and a Mindlin one is presented as a numerical study, so showing that band-gap description is not possible for such continua, in strong contrast with the relaxed micromorphic case.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,