Article ID Journal Published Year Pages File Type
797222 Journal of Fluids and Structures 2009 16 Pages PDF
Abstract

The near-wake structure of a uniform flow past a circular cylinder undergoing a constant-amplitude transverse forced oscillation is studied numerically using a 2-D large eddy simulation (LES) calculation with a Reynolds number range from 500 to 8000. Two effects are considered: First, a comparison is made between the wake structures of periodic and nonperiodic forced oscillations of the cylinder. This was done to emphasize the importance of wake-structure differences of a periodic forced oscillation and a self-excited oscillation of a circular cylinder with the latter being characterized as a nonperiodic forced oscillation. The nonperiodic constant-amplitude forced oscillations were obtained by modulating the frequency of the periodically oscillating cylinder. The differences in the vortex-shedding behavior were made evident by analyzing the vorticity field in the entire wake domain. Second, the effect of changes in the moderate values of the Reynolds number for constant and variable frequency oscillation was investigated. Significant effects on the vortex-shedding patterns in the near wake were observed for both aspects of this study.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,