Article ID Journal Published Year Pages File Type
797228 Journal of Fluids and Structures 2009 21 Pages PDF
Abstract

Vortical structures and instability mechanisms of the unsteady free surface wave-induced separation around a surface-piercing NACA0024 foil at a Froude number of 0.37 and a Reynolds number of 1.52×106 are studied using an unsteady Reynolds-averaged Navier–Stokes (URANS) code with a blended k−ε/k−ω turbulence model and a free surface tracking method. At the free surface, the separated flow reattaches to the foil surface resulting in a wall-bounded separation bubble. The mean and instantaneous flow topologies in the separation region are similar to the owl-face pattern. The initial shear-layer instability, the Karman-like instability, and the flapping instability are identified, and their scaling and physical mechanisms are studied. Validation with experimental fluid dynamics (EFD) and comparison with complementary detached-eddy simulation (DES) indicate that URANS resolves part of the organized oscillations due to the large-scale unsteady vortical structures and instabilities, thereby capturing the gross features of the unsteady separation. The URANS solutions show an initial amplitude defect of 30% for the free surface oscillations where the shear layer separates, and the defect progressively increases downstream as URANS rapidly dissipates the rolled up vortices.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,