Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7972311 | Materials Science and Engineering: A | 2018 | 24 Pages |
Abstract
Rolling of magnesium sheets is challenging at temperatures below 200â¯Â°C due to the strain localization and shear banding associated with the twinning activity. In this study, magnesium sheets with basal, off-basal (90° tilted), and mixed (50% basalâ¯+â¯50% off-basal) textures are rolled between room temperature and 165â¯Â°C to understand and control the twinning-induced localizations. While the fraction of strain-localized regions increases from 0.1 to 0.6 with strain and temperature, the intensity of them are controlled by the starting textures. The sheet with basal texture develops the most intense localizations at room temperature, and fails by shear banding at 0.16 strain. Off-basal sheet, on the other hand, has similar fraction of twins and localizations but deforms to the strain of 0.36 without shear banding. Maximum uniform strains increase with temperature and reach to 0.60, 0.50, and 0.33 at 165â¯Â°C for off-basal, mixed, and basal textures, respectively. When the fraction and intensity of localizations are incorporated to a model treating the continuum as a composite, it is possible to capture the shear banding and failure during rolling. The model correctly predicts the maximum strains for a given starting texture and temperature.
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
Kübra Atik, Mert Efe,