Article ID Journal Published Year Pages File Type
7973470 Materials Science and Engineering: A 2018 7 Pages PDF
Abstract
The effects of carbon content on the microstructure and room-temperature mechanical properties of Fe40Mn40Co10Cr10 high-entropy alloy (HEA) were systematically investigated. The results showed that heavy carbon alloyed HEA could possess supreme combination of high tensile strength (935 MPa) and high ductility (~ 74%). The excellent mechanical properties were ascribed to as follows: the high content interstitial carbon atoms strengthens the matrix greatly through suppressing dislocation motion and promoting the deformation-induced twinning at room temperature, which enhance the strength and ductility. Simultaneously, the ductility is further secured for single FCC structure maintained due to appropriate carbon alloying. Our findings provide a novel strategy for developing HEAs with excellent mechanical properties.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , , , ,