Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7973780 | Materials Science and Engineering: A | 2018 | 33 Pages |
Abstract
The effects of Sn content on strain hardening behavior of as-extruded Mg-xSn (x = 1.3, 2.4, 3.6 and 4.7 wt%) binary alloys were investigated by uniaxial tensile tests at room temperature. Strain hardening rate, strain hardening exponent and hardening capacity were obtained from the true plastic stress-strain curves. After hot extrusion, the as-extruded Mg-Sn alloys are mainly composed of α-Mg matrix and second phase Mg2Sn, which only exists in Mg-3Sn and Mg-4Sn. Average grain size decreases from 15.6 μm to 3.6 µm with Sn content increases from 1.3 to 4.7 wt%. The experimental results show that Sn content decreases strain hardening ability of as-extruded Mg-Sn alloys, but gives rise to an obvious elevation in tensile strength, yield strength and elongation of them. With increasing Sn content, strain hardening rate decreases from 3527 MPa to 1211 MPa at (Ï-Ï0.2) = 50 MPa, strain hardening exponent decreases from 0.21 to 0.13 and hardening capacity decreases from 1.66 to 0.63. The variation in strain hardening behavior of Mg-Sn alloys with Sn content is discussed in terms of the influences of grain size and distribution of grain orientation.
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
Chaoyue Zhao, Xianhua Chen, Fusheng Pan, Shangyu Gao, Di Zhao, Xiaofang Liu,