Article ID Journal Published Year Pages File Type
797460 Journal of the Mechanics and Physics of Solids 2007 36 Pages PDF
Abstract
A thermodynamically consistent phenomenological model for the simulation of the macroscopic behavior of ferroelectric polycrystalline ceramics is presented. It is based on the choice of microscopically motivated internal state variables, which describe the texture and the polarization state of the polycrystal. Saturation states are defined for the internal state variables. The linear material behavior is modelled by a transversely isotropic piezoelectric constitutive law, where the anisotropy is history dependent. For non-linear irreversible processes, a switching function and associated evolution rules are applied, satisfying the principle of maximum ferroelectric dissipation. Saturation is modelled by the use of energy-barrier functions in the electric enthalpy density function. Numerical examples demonstrate the capability of the proposed model, to predict the typical experimental results.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,