Article ID Journal Published Year Pages File Type
7974728 Materials Science and Engineering: A 2016 16 Pages PDF
Abstract
The deformation mechanisms and mechanical properties of Fe-Mn-C-Al twinning-induced plasticity (TWIP) steels with a chemical composition range of 12-18 wt% Mn and 0-3 wt% Al, are reviewed. The in-depth microstructural analysis revealed that all the investigated TWIP steels exhibit deformation twinning as the main deformation mechanism in addition to dislocation glide. The Al-free TWIP steels have a much more complex deformation behavior than the Al-added TWIP steels. The deformation of Fe-15Mn-0.6C steel is accompanied by the formation of a very small amount of strain-induced ε martensite, in addition to deformation twinning. Deformation of Fe-12Mn-0.6C steel is accompanied by several deformation mechanisms which are simultaneously activated: strain-induced ε martensite, formation of shear bands and strain-induced α′ martensite, in addition to deformation twinning. The upper limit for the value of SFE for strain-induced martensitic transformation is determined to be approximately 13 mJ/m2. The results confirm that the SFE is the key parameters affecting the strength and the ductility of TWIP steel. A linear relation between the ultimate tensile strength (UTS) and the SFE is proposed, with the UTS increasing with decreasing SFE.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, ,