Article ID Journal Published Year Pages File Type
797724 Journal of the Mechanics and Physics of Solids 2016 27 Pages PDF
Abstract

In this work a theoretical framework implementing the phase-field approach to fracture is used to couple the physics of flow through porous media and cracks with the mechanics of fracture. The main modeling challenge addressed in this work, which is a challenge for all diffuse crack representations, is on how to allow for the flow of fluid and the action of fluid pressure on the aggregate within the diffuse damage zone of the cracks. The theory is constructed by presenting the general physical balance laws and conducting a consistent thermodynamic analysis to constrain the constitutive relationships. Constitutive equations that reproduce the desired responses at the various limits of the phase-field parameter are proposed in order to capture Darcy-type flow in the intact porous medium and Stokes-type flow within open cracks. A finite element formulation for the solution of the governing model equations is presented and discussed. Finally, the theoretical and numerical model is shown to compare favorably to several important analytical solutions. More complex and interesting calculations are also presented to illustrate some of the advantageous features of the approach.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,