Article ID Journal Published Year Pages File Type
797725 Journal of the Mechanics and Physics of Solids 2016 21 Pages PDF
Abstract

The stability of thin viscous sheets has been studied so far in the special case where the base flow possesses a direction of invariance: the linear stability is then governed by an ordinary differential equation. We propose a mathematical formulation and a numerical method of solution that are applicable to the linear stability analysis of viscous sheets possessing no particular symmetry. The linear stability problem is formulated as a non-Hermitian eigenvalue problem in a 2D domain and is solved numerically using the finite-element method. Specifically, we consider the case of a viscous sheet in an open flow, which falls in a bath of fluid; the sheet is mildly stretched by gravity and the flow can become unstable by ‘curtain’ modes. The growth rates of these modes are calculated as a function of the fluid parameters and of the geometry, and a phase diagram is obtained. A transition is reported between a buckling mode (static bifurcation) and an oscillatory mode (Hopf bifurcation). The effect of surface tension is discussed.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,