Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7977268 | Materials Science and Engineering: A | 2015 | 7 Pages |
Abstract
Competition between work-hardening effect and dynamic-softening behavior of as-cast GH4720Li superalloys with original dendrite microstructure during moderate-speed deformation was quantitatively investigated in this present paper. Flow behavior for processing the studied alloys with dendrite microstructure behaves typical three stages, caused by the competition effect between work-hardening and dynamic-softening. The relationships between work-hardening rate and true strain and true stress were derived from Kocks-Mecking dislocation relation. The work-hardening effect shows two obvious stages with strain, viz. steady fluctuations and linear decreasing. An obvious work-hardening effect was demonstrated under lower temperature and higher strain rate. The linear relationship of work-hardening rate θ on true stress ε was constructed with the slope only related to annihilation coefficient Ω. The microstructural mechanism of as-cast GH4720Li superalloys during moderate-speed deformation was referred to dislocation multiplication and dendrite fragmentation, and the latter was beneficial to dynamic recrystallization during moderate-speed deformation.
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
Y.Q. Ning, T. Wang, M.W. Fu, M.Z. Li, L. Wang, C.D. Zhao,