Article ID Journal Published Year Pages File Type
7977909 Materials Science and Engineering: A 2015 8 Pages PDF
Abstract
Detailed knowledge of the fraction, morphology and chemical composition of phase constituents and their effect on the mechanical properties play a crucial role in understanding of the mechanisms influencing the properties of Advanced High Strength Steels (AHSS). On the other hand, the most important microstructural features of these steels are characterized by different size, starting from the nano- and ending on the microscale. Therefore, a detailed characterization of the AHSS microstructure must involve many methods capable of tracing the microstructure at different scale levels. The paper presents selected capabilities of advanced analytical techniques, in combination with conventional light optical microscopy (LOM), for quantitative characterization of the microstructure developed in AHSS steels during thermomechanical processing or continuous annealing. The material used for the investigation comprised the samples of DP steel sheet produced at the industrial scale. Special emphasis was focused on the capabilities of the Field Emission Gun Scanning Electron Microscopy (FEG SEM) combined with EBSD of microstructural characterization. The significance of accurate microstructure characterization for the modeling of mechanical properties of AHSS steels was demonstrated for the case of numerical calculation of the stress-strain curve in the standard tensile test. The work results indicate that such an engineering approach is useful for prediction of material properties.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , ,