Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7978203 | Materials Science and Engineering: A | 2015 | 9 Pages |
Abstract
The strengthening of metals is essentially controlled by the microstructures of the metal solids and it is well understood that smaller grain sizes lead to higher hardness and increased strength. Nevertheless, true bulk nanostructured materials are difficult to produce using established engineering techniques, especially when considering the practical and societal needs of materials selection. Lightweight Al and Mg are conventional metals having excellent physico-chemical and mechanical properties and with good strength/weight ratios in the finished products. However, the fabrication of high-strength metals consisting of these elements, using mechanical alloying and milling and cladding-type metal working, generally involves long-term processing conducted under extreme conditions using special facilities. The present study demonstrates the very rapid synthesis of a metal matrix nanocomposite (MMNC) of the Al-Mg system which was achieved by stacking metal disks of the two pure metals and processing by high-pressure torsion at ambient temperature for 10 turns. An exceptionally high hardness was achieved, similar to many steels, through rapid stress-induced diffusion of Mg and the simultaneous formation of intermetallic nano-layers and a nanostructured intermetallic compound with a supersaturated solid solution. This unexpected result suggests a potential for simply and expeditiously fabricating a wide range of MMNCs.
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
Byungmin Ahn, Alexander P. Zhilyaev, Han-Joo Lee, Megumi Kawasaki, Terence G. Langdon,