Article ID Journal Published Year Pages File Type
7978211 Materials Science and Engineering: A 2015 10 Pages PDF
Abstract
The deformation behaviour of a TWinning Induced Plasticity (TWIP) steel was studied at quasi-static strain rates using synchrotron X-ray diffraction. A {111} RD and {200} RD texture developed from the earliest stages of deformation, which could be reproduced using an elasto-plastic self consistent (EPSC) model. Evidence is found from multiple sources to suggest that twinning was occurring before macroscopic yielding. This included small deviations in the lattice strains, {111} intensity changes and peak width broadening all occurring below the macroscopic yield point. The accumulation of permanent deformation on sub-yield mechanical cycling of the material was found, which further supports the diffraction data. TEM revealed that fine deformation twins similar to those observed in heavily deformed samples formed during sub-yield cycling. It is concluded that twinning had occurred before macroscopic plastic deformation began, unlike the behaviour traditionally expected from hexagonal metals such as Mg.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , ,