Article ID Journal Published Year Pages File Type
7980374 Materials Science and Engineering: A 2014 8 Pages PDF
Abstract
Several metals were severely deformed at cryogenic temperature in liquid nitrogen and at room temperatures in air using high-pressure torsion (HPT). Extra grain refinement to the nanometer level and extra hardening were achieved after cryogenic-HPT in niobium, which has a high melting temperature. In copper, which has a moderate melting temperature, nanograins formed during cryogenic-HPT but self-annealing, i.e., abnormal softening and grain coarsening to the micrometer level, occurred within a few hours after the cryogenic-HPT. In low-melting-temperature metals such as zinc, magnesium and aluminum, cryogenic-HPT led to extra softening and/or formation of coarser grains because of enhanced static recrystallization. The effect of impurities on grain size, hardness-strain behavior and self-annealing was also studied after cryogenic-HPT.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , ,