Article ID Journal Published Year Pages File Type
798272 Journal of the Mechanics and Physics of Solids 2009 12 Pages PDF
Abstract

Using mixture theory we formulate the balance laws for unsaturated porous media composed of a double-porosity solid matrix infiltrated by liquid and gas. In this context, the term ‘double porosity’ pertains to the microstructural characteristic that allows the pore spaces in a continuum to be classified into two pore subspaces. We use the first law of thermodynamics to identify energy-conjugate variables and derive an expression for the ‘effective’, or constitutive, stress that is energy-conjugate to the rate of deformation of the solid matrix. The effective stress has the form σ¯=σ+Bp¯1, where σσ is the total Cauchy stress tensor, BB is the Biot coefficient, and p¯ is the mean fluid pressure weighted according to the local degrees of saturation and pore fractions. We identify other emerging energy-conjugate pairs relevant for constitutive modeling of double-porosity unsaturated continua, including the local suction versus degree of saturation pair and the pore volume fraction versus weighted pore pressure difference pair. Finally, we use the second law of thermodynamics to determine conditions for maximum plastic dissipation in the regime of inelastic deformation for the unsaturated two-porosity mixture.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,